类金刚石碳(DLC)涂层是一种高度耐用的抗反射光学涂层。它们具有高硬度、低摩擦表面,耐划伤和腐蚀,同时在中长波红外线中具有好的的传输性能。这些特点使其成为热成像和其他国防应用的选择之一。类金刚石膜作为一种功能膜和护理膜,它被广泛应用于机械、电子、光学、医疗、航空航天等领域。
DLC膜在红外波长上表现出良好的宽带透射率,但与标准BBAR镀膜相比,平均通光略低。为了减少光的损失,DLC膜通常与传统 AR 镀膜配对使用。微米光学可为硅和锗基底提供 BBAR+DLC 镀膜。
增透膜是由多层不同折射率的薄膜堆叠而成。通过精确控制每一层的厚度和折射率,可以实现在宽光谱范围内减少反射、增加透射光功率的效果,从而提高成像质量和光学性能。类金刚石碳(DLC)涂层是一种高度耐用的抗反射光学涂层。它们具有高硬度、低摩擦表面,耐划伤和腐蚀,同时在中长波红外线中具有好的的传输性能。DLC膜在红外波长上表现出良好的宽带透射率,但与标准BBAR镀膜相比,平均通光略低。为了减少光的损失,DLC膜通常与传统 AR 镀膜配对使用。微米光学可为硅和锗基底提供 BBAR+DLC 镀膜。
1、高透过率:增透膜能够显著减少光学表面的反射,使更多光线透过,提高光学系统的透过率。
2、宽光谱性能:通过合理选择材料和设计结构,增透膜可以在宽光谱范围内实现良好的增透效果,满足不同应用场景的需求。
3、优异的环境稳定性:增透膜+DLC膜,具有良好的耐磨、耐腐蚀性能,能够在恶劣环境下保持稳定的光学性能。
用途 | 相关行业 |
光学仪器 | 在光学仪器中起到重要的作用,如望远镜、显微镜、瞄准镜等,可以增加透过率、提高分辨率和成像质量。 |
激光技术 | 在激光系统中起到增透作用,可以减少反射损失、提高传输效率和精度。 |
光电传感器 | 在光电传感器中起到抗反射和增加透过率的作用,可以提高传感器性能和响应速度。 |
太阳能电池 | 在太阳能电池中起到增加透过率和减少反射损失的作用,可以提高光电转换效率和降低成本。 |
显示器 | 在显示器中起到抗反射和提高透过率的作用,可以提高显示效果和观看体验。 |
多层增透膜
1)多层窄带增透:多个膜层叠加对单个波长光进行反复干涉相消以使得反射率达到最小
2)多层宽带增透:多个膜层叠加对不同波长的反射光都进行干涉相消从而达到对一个宽波段的光增透
光在透镜表面上的反射还会造成杂散光 , 严重影响光学系统的成像质量。为了减少光学元件 ( 如透镜、棱镜等 ) 表面上光的反射损失 , 通常在元件表面镀上一层透明介质薄膜 ( 称为增透膜),
增透膜原理:“当薄膜的厚度适当时,在薄膜的两个面上反射的光,路程差恰好等于半个波长,因而互相抵消。这就大大减少了光的反射损失,增强了透射光的强度。”
众多的光学系统中,一个相当重要的组成部分是镜片上能降低反射的镀膜。在很多应用领域中,增透膜是不可缺少的,否则,无法达到应用的要求。
增透膜原理:
增透膜原理:“当薄膜的厚度适当时,在薄膜的两个面上反射的光,路程差恰好等于半个波长,因而互相抵消。这就大大减少了光的反射损失,增强了透射光的强度。”
其一是当光从一种介质进入另一种介质时,如果两种介质的折射率相差减小,反射光的能量减小,透射光的能量增加。当光射到两种透明介质的界面时,若光从光密介质射向光疏介质,光有可能发生全反射;当光从光疏介质射向光密介质,反射光有半波损失。对于玻璃镜头上的增透膜,其折射率大小介于玻璃和空气折射率之间,当光由空气射向镜头时,使得膜两面的反射光均有半波损失,从而使膜的厚度仅仅只满足两反射光的光程差为半个波长。膜的后表面上的反射光比前表面上的反射光多经历的路程,即为膜的厚度的两倍。所以,膜厚应为光在薄膜介质中波长的1/4,从而使两反射光相互抵消。由此可知,增透膜的厚度d=λ/4n(其中n为膜的折射率,λ为光在空气中的波长)。
如果镜头表面不涂薄膜,光直接由折射率为n1=1.0空气垂直入射到折射率为n2=1.5的玻璃的介面时,反射率,即将有4%的入射光能被反射,96%的入射光能进入玻璃,这说明光学器件表面的反射光会导致光能损失。进入玻璃的光再从玻璃垂直进入空气的分介面时,透射光与入射光相比,又要产生相同比例的能量损失。即一个简单玻璃透镜,光通过它的两个透光表面,透射光的强度I只占原入射光强度I0的。
人们普遍使用较高级照相机的物镜、潜水艇上用的潜望镜等一般都由多个透镜组成,其目的是利用凸透镜和凹透镜的不同性质消除相差。光能损失越大,所成像的质量越差,而且反射光还可能被其它表面再反射到像的附近,形成有害的杂光,将进一步减弱成像质量。
如果在玻璃镜头表面涂上一层其折射率介于玻璃和空气之间的透明介质,当有增透膜时透射光的能量是原入射光能量的。增加氟化镁薄膜后,透射光能提高了97.3%-92%=5.3%,所以反射光能减少了。则涂有增透膜的6个透镜组成的镜头,与相同情况下光直接由空气进入玻璃镜头时相比较,提高了透射光能量84.8%-61%=23.8%,减少了光的反射损失。
利用薄膜干涉的原理,增加了透射光的能量。因为当光从光疏介质射向光密介质时,反射光有半波损失,即反射光与入射光相位恰好相反。
若光直接由空气垂直射到玻璃镜头的表面时,反射光将直接与入射光相遇发生干涉相消,反射光抵消一部分入射光,使透射光的能量减少。
若在玻璃镜头表面涂上一层薄膜,使它的厚度等于光在薄膜中波长的四分之一。
当光再由空气射向镜头时,由于薄膜两个面的反射光均有半波损失,膜后表面的反射光比膜前表面反射光的光程差恰好相差半个波长,此时产生干涉相消的不是反射光与入射光,而是薄膜前后两个表面的反射光相消,即相当于增加了透射光的能量。
根据光的传播理论,不同频率的光在同一介质中传播速度和波长是不同的,但选择材料厚度只能是某一波长的四分之一,即只能使某一频率的反射光相消,其它频率的反射光不能完全相消。因此,对涂有增透膜的光学器件在白光照射下会呈现一定颜色。例如照相机底片对波长为5500埃的黄绿色光最敏感,它要消除波长为5500埃的这种色光的反射光而增加它的透射光,其薄膜的厚度只能是这种色光在薄膜中波长的四分之一。当反射光在原来白光中少了黄绿色光后,镜头就会呈现出淡紫色。
综上所述,我们可以得出这样的结论:在光学镜头表面涂一层厚度和材料适当的薄膜,能够增加透射光的能量,减少反射光的能量损失。达到让“增透膜”增透的效果。
光学镀膜概念及原理
镀膜是用物理或化学的方法在材料表面镀上一层透明的电解质膜,或镀一层金属膜,目的是改变材料表面的反射和透射特性,达到减少或增加光的反射、分束、分色、滤光、偏振等要求。常用的镀膜法有真空镀膜(物理镀膜的一种)和化学镀膜。光学零件表面镀膜后,光在膜层层上多次反射和透射,形成多光束干涉,控制膜层的折射率和厚度,可以得到不同的强度分布,这是干涉镀膜的基本原理。
光学薄膜分类:
增透膜:硅、锗、硫化锌、硒化锌等基底较多,氟化物较为少见。
单波长、双波长、宽带
反射膜:分介质与金属反射膜,金属反射膜一般为镀金加保护层。
半反射、单波长、双波长、宽带
硬碳膜 :也叫DLC膜,一般镀在硅、锗、硫系玻璃外表面,做保护/增透作用, 产品另一侧一般要求镀增透膜。
分光膜 :有些要求特定入射角情况下,可见光波段反射,红外波段透过,多用于光谱分析中。
45度分光片、双色分束、偏振分束片&棱镜
滤光膜:宽带、窄带
激光晶体膜:YAG/YV04/KTP/LBO/BBO/LIND03
紫外膜-增透:193/248/266/308/340/355,铝反射180-400nm
红外膜:CO210.6UM/YAG2940NM/SI&GE&ZNSE&ZNS
高反射膜
金属镜(Metallic Mirror)
成本较低,反射波段较宽。
一般用于反射率要求不是特别高,但是波段很宽的应用。
因为存在部分吸收,因此限制了其在激光领域的应用。
全介质反射镜(Dielectric HR coatings )
成本较高,反射波段较窄。
反射率可以做到很高。
反射波段范围有限,如加大反射波段范围,膜层镀制难度将提高。
膜层较厚,应力较大,存在膜层脱落风险。
镀膜基片
指在什么材质上镀膜。基底往往是使用环境和用途决定。常见的镀膜基底选择? 如气体分析保护金多用氟化钙基底,普通反射镜用浮法玻璃,激光腔镜用硅基底,红外滤光片多用硅锗,可见及近红外多是玻璃,无氧铜多是镍和金等。
氟化钙,氟化钡,氟化镁,蓝宝石,锗,硅,硫化锌,硒化锌,硫系玻璃,N-BK7,熔融石英等
镀膜材料
附着在基底上的起到透射,反射,分光等作用的材料,可能是光学材料如硫化锌、氟化镁等,也可能是金属,如铝金等。目前成熟大批量光学镀膜材料多是颗粒状或是药片状,也有整块晶体镀膜靶材;金属镀膜材料多是丝及块状;基底,用途,和镀膜指标决定用什么镀膜材料。
镀膜工序和设备
清洗设备:
超声波清洗机:指清洗和烘干一体化的,可直接装盘镀膜。同时这个机器必须在洁净空间使用;
光学镜片的超声波清洗技术
在光学冷加工中,镜片的清洗主要是指镜片抛光后残余抛光液、黏结剂、保护性材料的清洗;镜片磨边后磨边油、玻璃粉的清洗;镜片镀膜前手指印、口水以及各种附着物的清洗。
传统的清洗方法是利用擦拭材料(纱布、无尘纸)配合化学试剂(汽油、乙醇、丙酮、乙醚)采取浸泡、擦拭等手段进行手工清擦。
这种方法费时费力,清洁度差,显然不适应现代规模化的光学冷加工行业。这迫使人们寻找一种机械化的清洗手段来代替。于是超声波清洗技术逐步进入光学冷加工行业并大显身手,进一步推动了光学冷加工业的发展。
超声波清洗技术的基本原理,大致可以认为是利用超声场产生的巨大作用力,在洗涤介质的配合下,促使物质发生一系列物理、化学变化以达到清洗目的的方法。
当高于音波(28~40khz)的高频振动传给清洗介质后,液体介质在高频振动下产生近乎真空的空腔泡,空腔泡在相互间的碰撞、合并、消亡的过程中,可使液体局部瞬间产生几千大气压的压强,如此大的压强使得周围的物质发生一系列物理、化学变化。
工艺流程:
等离子增强化学气相沉积 (PECVD):
是借助微波或射频等使含有薄膜组成原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。因为利用了等离子的活性来促进化学反应,PECVD可以在较低的温度下实现
等离子辅助气相沉积
目前DLC膜常用制备方法。采用射频技术(RF-PACVD)将通入的气体(丁烷、氩气)离化,在极板自偏压(负)的吸引下,带正电的粒子向基板撞击,沉积在基板表面。